Home » Oklahoma » Plant growth regulators for wheat

Plant growth regulators for wheat

About Me

David Marburger

David Marburger

Since April 2016, I have served as the Small Grains Extension Specialist at Oklahoma State University. My research and extension efforts focus on delivering science-based recommendations in order to increase small grains production and profitability for stakeholders throughout Oklahoma and the southern Great Plains.

View Full Profile →

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,906 other followers

Wheat lodging is not generally a widespread problem in Oklahoma, but it does occur. Lodging occurs due to a variety of factors, and as shown in the figure below, the timing of lodging will determine the final impact on grain yield. Lodging at head emergence, for example, can cause as little as 30 or as much as 80% yield reduction. The numbers in the figure do not account for harvest losses, which can exceed losses associated with lower photosynthetic capacity shown in the figure.

Slide05

Freeze injury or disease can cause lodging due to stem failure, which is characterized by plant stems breaking near the base. I the absence of weakened stems due to freeze or disease, most lodging in wheat is caused by failure of the root anchorage system (root lodging). Root lodging occurs when the anchorage system of a top-heavy wheat plant is weakened due to moist soil and wind provides sufficient force to overcome the rotational stiffness of the root/soil complex. Research has shown that increasing the soil water content from 17 to 26% reduced the force required for anchorage failure by 33%, and as little as 0.25 inches of water plus 11 mph winds were enough to cause lodging. The thicker the wheat crop and/or the taller the wheat crop, the more force that winds exert on the root anchorage system and the greater the likelihood of lodging.

Severe lodging in an Oklahoma wheat field in 2013

In 2013 and 2014 we evaluated the plant growth regulator trinexapac-ethyl, which is sold under the trade name Palisade®. Palisade is a giberellic acid inhibitor and works primarily by reducing plant height. In our study we evaluated 12 oz/ac of Palisade with and without 4 oz/ac of Tilt (propiconazole) applied at Feekes GS 7 (two nodes visible above the soil surface). We included an untreated check and ALL plots, including the check, received 10.5 oz/ac of Quilt Xcel at Feekes GS 10.5 (heading). We conducted the trial at Stillwater (Irr), Perkins (Irr), and Chickasha (Non-Irr).

 

I provided 2013 results in a blog post last year, and this post provides an update including our 2014 findings. While application of Palisade resulted in numeric reductions in plant height at Chickasha and Stillwater in 2013, differences among treatments were not statistically significant. In 2014 application of Palisade or Palisade plus Tilt significantly reduced plant height at Chickasha and Perkins.

Wheat plant height as affected by plant growth regulators in 2013

Wheat plant height as affected by plant growth regulators in 2013

 

Wheat plant height as affected by plant growth regulator in 2014

Wheat plant height as affected by plant growth regulator in 2014

We rated plots for lodging at harvest using a 1 – 10 scale with 0 equaling no lodging and 10 equaling complete lodging.  Application of Palisade plus Tilt reduced lodging over Palisade alone at Chickasha. Application of Palidsade or Palisade plus Tilt resulted in numeric reductions in lodging scores at Stillwater in 2013, but the result were too variable to result in statistical significance. Palisade did not affect lodging at Perkins in 2013. There was no lodging for any site or treatment in 2014.

 

Lodging as affected by plant growth regulator in 2013. No lodging occurred in 2014 regardless of treatment.

Lodging as affected by plant growth regulator in 2013. No lodging occurred in 2014 regardless of treatment.

 

Application of Palisade or Palisade plus Tilt increased grain yield at Chickasha and had no effect on grain yield at Stillwater or Perkins in 2013. It is interesting to note that the Palisade treatment increased grain yield at Perkins in 2013 even though the plots lodged at comparable levels as the non treated check. My best hypothesis is that the treated plots lodged later than the non treated plots, as all plots were standing at anthesis (see picture below). Application of Palisade or Palisade plus Tilt increased grain yield at Perkins in 2014 even though there was no lodging. There were no differences in grain yield at Stillwater or Chickasha in 2014. Lodging occurred at Chickasha, but occurred later in the season.

Wheat grain yield as affected by plant growth regulator in 2013

Wheat grain yield as affected by plant growth regulator in 2013

Wheat grain yield as affected by plant growth regulator in 2014

Wheat grain yield as affected by plant growth regulator in 2014

 

To summarize our work, we found a trend for one to two inch reductions in plant height when Palisade or Palisade plus Tilt were applied, but this did not consistently translate to increased grain yield. Our results are consistent with other wheat plant growth regulator research, which has reported similar variation in response among sites and years.  The literature also shows that reduction in lodging is relative to the straw strength of the variety. That is, a plant growth regulator will not make a lodging prone variety stand like one with excellent straw strength, rather they will make it less prone to lodging relative to the same variety non treated.

Based on current evidence, plant growth regulators in Oklahoma are best kept on acres with high (> 80 bu/ac) yield potential that may have greater propensity for lodging due to variety or fertility.  If these high yield potential acres are being sprayed with a growth regulator at GS 7, the addition of a foliar fungicide might be prudent if it can be included at a relatively low cost. This early-season fungicide application will not, however, substitute for a fungicide application at flag leaf.

Full disclosure: Syngenta donated the product for this trial, but the only funding for the research was provided by the Oklahoma Agricultural Experiment Station and the Oklahoma Cooperative Extension Service. We conducted a separate trial evaluating Palisade in drought stress environments that was partially funded by Syngenta. The analysis and recommendations made in this blog post are based on research findings from 2013 and 2014 production years. Recommendations may change as further research is conducted and new information is obtained.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: