About Amanda De Oliveira Silva

I have served as an Assistant Professor and Small Grains Extension Specialist at Oklahoma State University since August 2019. I believe that close interaction with producers is vital to understand their production strategies and to establish realistic research goals. My program focuses on developing science-based information to improve the agronomic and economic viability of small grains production in Oklahoma and in the Southern Great Plains.

The 2023 Oklahoma Wheat Harvest Begins

Oklahoma Harvest Report by the Oklahoma Wheat Commission

Oklahoma Wheat Harvest had test cuttings with small deliveries last Thursday evening in Eldorado, OK. Rains over the Memorial Day weekend delayed producers from getting into the fields, but machines started moving across the Southern border of Oklahoma in many locations on Monday and Tuesday this week. Light rains and high humidity in parts of Southwest Oklahoma will make a slow start today, but producers are hopeful to get rolling in these locations by late this afternoon. All locations being reported this afternoon are reporting favorable test weights in all locations with ranges from 60-64 lbs. per bushel. Several locations are reporting 62-64 lbs. per bushel.
Moisture has been ranging from 12-13.5%, with most wheat being taken in at around 12.5%. Early yields being reported in Southern Oklahoma are ranging from the mid 20’s to low 40’s depending on location and management practices. Some high management intensive producers have reported a couple locations to be making in the mid 40’s with one report coming in at 55 bushels per acre. Most yields being reported are ranging from the low 30’s to low 40’s in Southern and South Central Oklahoma. Those regions are predicted to have the best overall crop conditions for Oklahoma this year. Protein has not been reported on most early samples throughout the region, although some locations have reported proteins ranging from 12.5% to as high as 15%.

Eldorado– Test weights on early wheat ranging from 60 to 63 lbs. per bushel. No yields reported on early cuttings.
Grandfield/Devol/Chattanooga– Test weights ranging from 62-64 lbs. per bushel. Moisture reported at 12.5% to 13%. Yields ranging mostly from 30 bushels to 40 bushels per acre.
Frederick– Test weights on early cuttings ranging mainly from 60 to 62 lbs. per bushel. Moisture was reported at 12.5% to 12.7% Yields ranging from the low 30’s to low 40’s on the wheat being harvested.
Tipton– This area suffered more from drought than other areas in South Central, Oklahoma. Yields are being reported from the low 20’s to low 30’s depending on location. Test weight has been lower on some fields, but the average for the region is 60 lbs. per bushel. Moisture was ranging from 12.5% to 13%.
Altus/Duke– Harvest has started in this area with great movement yesterday afternoon. Light rains and high humidity will make the start slower this afternoon. Test weights ranging from 60 lbs. to 62 lbs. per bushel. Early yields reported from the high 20’s to low 40’s.
Hobart/Gotebo– A couple loads have just been received in these locations. Test weights reported at 60 to 62 lbs. per bushel. Yields ranging from the mid 20’s to low 30’s. Early reports indicate this area has struggled harder with drought conditions.
Lawton– A couple loads have been taken in at Lawton. Test weight was 62 lbs. per bushel, no yields reported. Moisture was 13.5%.
Rocky/Sentinel– Samples have been received at these locations but nothing has been cut, producers were hoping to start late this afternoon or tomorrow.


Below, see the next 1-3 day rain prediction forecast models provided by the Oklahoma Mesonet. The next Oklahoma Harvest Report will be published on Monday, June 5, 2023, and a regional report will be published by Plains Grain Inc. on Friday, June 2, 2023

2023 OSU Wheat Variety Testing Plot Tours and Wheat Status

Hello everyone, find below the complete schedule for the 2023 OSU Wheat Variety Trials plot tours and Field Days. We look forward to seeing you all there!

Note that times are subject to change due to environmental conditions. Please call your County Extension Office to confirm the date, time, and location.

Notes:
Abbreviations: DP = Dual-purpose, GO = Grain-only, IM =Intensive management, SM = Standard management
1 Meet at the Extension office
2 Meet at the plot, 1 mile north of Bill’s Corner on the east side of Hwy 177 at Knobhill.
3 Meet at fairgrounds for lunch, plot tour south of town afterwards
4 Meet at plot ¾ mile west of HWY 54 on Arapaho Road
5 Lunch at Wheeler Brothers, plot tour north of elevator afterwards
6 Meet at Ledbetter’s farm @ 9:30, field tour @ 10, lunch @ 12
7 Lunch at Wheeler Brothers, plot tour north of town afterwards
8 Meal at Brook Strader’s farm, plot tour afterwards

The plot maps for each location can be found on our website click here

Below are pictures from some of the variety trial locations from the end of March to early April. Wheat needs rain badly.

You can watch my latest interview with SUNUP TV on the following link: How is Drought Impacting the Wheat Crop?

Balko wheat variety trial on March 28, 2023. Photo: Tyler Lynch.
Hooker wheat variety trial on March 28, 2023. Photo: Tyler Lynch.
Alva wheat variety trial on April 6, 2023. Photo: Tyler Lynch.
Cherokee wheat variety trial on April 6, 2023. Photo: Tyler Lynch.
El Reno wheat variety dual-purpose trial on April 5, 2023. Photo: Tyler Lynch.

First Hollow Stem Update – 3/20/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 3/16/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 3/14/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 3/10/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 3/7/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 3/3/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

First Hollow Stem Update – 2/27/2023

Amanda de Oliveira Silva, Small Grains Extension Specialist

First hollow stem (FHS) is the optimal time to remove cattle from wheat pasture. This occurs when there is 1.5 cm (5/8”, or the diameter of a dime) of hollow stem below the developing grain head (see full explanation). The latest FHS results from OSU forage trials in Stillwater (Table 1) and Chickasha (Table 2) are listed below. For an additional resource and wheat update on FHS, see the Mesonet First Hollow Stem Advisor.

We use an accelerated growth system to report the earliest onset of FHS stage. Trials are seeded early to simulate a grazed system, but the forage is not removed. Varieties reported here with the earliest FHS date should be the first to monitor in commercial fields. In practice, wheat that is grazed will likely reach FHS stage later than reported here, and differences between varieties will likely moderate.

Table 1. First hollow stem (FHS) results for each variety collected at Stillwater. Plots were planted on 10/06/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Table 2. First hollow stem (FHS) results for each variety collected at Chickasha. Plots were planted on 10/07/22 but not grazed or clipped. The threshold target for FHS is 1.5 cm (5/8″ or the diameter of a dime). The value of hollow stem for each variety represents the average of ten measurements. Varieties exceeding the threshold are highlighted in red.

Contact your local Extension office and us if you have questions. 

Additional resources available:

Acknowledgments: 

Tyler Lynch, Senior Agriculturalist

Israel Molina Cyrineu, Graduate Research Assistant

Samson Abiola, Graduate Research Assistant

Cassidy Stowers, Undergraduate Student

Lettie Crabtree, Undergraduate Student

Mites in Wheat Fields

Amanda de Oliveira Silva, Small Grains Extension Specialist

Areas of Oklahoma with dry conditions have begun to see some visible wheat injury due to brown wheat mite (Figure 1) and winter grain mite (Figure 2). Last week, Josh Bushong, OSU Northcentral Area Extension Agronomist, reported seeing fields with injury due to brown wheat mites in Alfalfa and Kingfisher counties (Figure 3). Later that week Tyler Lynch, the Senior Agriculturalist in the Small Grains Program also reported seeing wheat grain mites in our wheat plots at Alfalfa and Woods Counties.

Two common mites can injure wheat, the brown wheat mite and the winter grain mite. Producers need to remain alert so that they don’t mistake damaged wheat from small grains mites for drought or virus disease.

Figure 1. Brown wheat mite with oversummering egg

Brown wheat mite is small (about the size of this period.) with a metallic brown to black body and four pairs of yellowish legs (Figure 1). The forelegs are distinctly longer than the other three pairs. Brown wheat mites can complete a cycle in as little as 10-14 days. Oklahoma experiences multiple generations of brown wheat mites that usually peak in spring, and the last generation occurs in April. At that time, females produce a whitish egg that will over summer.

Figure 2. Winter grain mite with a kidney-shaped egg

Winter grain mite is small (about 1 mm long) with a dark blue to black body and four pairs of orange-red legs, and a small reddish spot on the top of its abdomen that can be seen under magnification (Figure 2). Winter grain mite eggs are kidney-shaped, and change from clear, to yellow to reddish-orange after several days. They are laid on leaf blades and stems or the roots near the crown. Besides wheat, many grasses serve as host plants, including barley, oats, ryegrass, and fescue. We typically experience two generations each year, a fall generation and a winter generation that cycles out in March.

Figure 3. Field infested with brown wheat mite. Photos taken by Josh Bushong at Kingfisher County on February 21, 2023.
Figure 4. Leaf stippling from brown wheat mite (left) and grain wheat mite (right) feeding. Photo on the right taken by Tyler Lynch at Alfalfa county on April 24, 2023.
Figure 5. Field infested with winter grain mite

Both mites feed by piercing plant cells in the leaf, which results in “stippling” (Figures 4 and 5). The leaves take on a characteristic brown-grayish or cast and could be mistaken for injury due to herbicide. These mites are more likely to cause injury in wheat stressed from lack of moisture or nutrients.

Figure 6. Winter grain mite hiding in residue

Threshold

Brown wheat mites are not light sensitive but are vulnerable to driving rains of more than 0.25 inches, which tend to reduce populations. Winter grain mites are more tolerant of rainfall but are very light sensitive and tend to avoid bright, sunny days and windy days, so adjust your scouting accordingly. It is best to scout for winter grain mites on still, cloudy days or early morning/late evening. On sunny or windy days, they hide under the soil surface (up to a couple of inches) or congregate under dirt clods (Figure 6). Both mites are associated with continuous wheat production. Research suggests that brown wheat mite can be economically treated when there are 25-50 mites per leaf in wheat that is 6-9 inches tall. An alternative estimation is “several hundred” per foot of a row. The best recommendation for winter grain mite is to treat when plants show visible injury, and there are still mites present.

Chemical control

Only a few insecticides include either mite species on their label. Work conducted by Dr. Gerald Wilde at Kansas State evaluated several insecticides for the control of winter grain mites. Of those registered for winter grain mites, the insecticide dimethoate (Dimethoate and other generics) is effective. Other pyrethroid insecticides, lambda-cyhalothrin (Karate, Warrior II, and its generics), gamma-cyhalothrin (Declare) and beta-cyfluthrin (Baythroid and its generics) are also effective for both mites, even if they are not specifically listed on the label.

Additional resources

Contact your County Extension office

For more information on these mites, consult fact sheet EPP-7093 Mites in Small Grains by clicking here. If you find active mite infestations in your field, consult fact sheet CR-7194 Management of Insect and Mite Pests in Small Grains for registered insecticides, application rates, and grazing/harvest waiting periods by clicking here.