Step 1

Express the expression for the confidence interval.

\(\displaystyle{C}.{I}={p}\pm{Z}\cdot\sqrt{{{\frac{{{p}{\left({1}-{p}\right)}}}{{{n}}}}}}\)

Here, Z* is the critical value .

From the Z table, the value corresponding to the region 90.5 is,

\(\displaystyle{Z}\cdot={1.31}\)

Step 2

Put 590 for n, 0.93 for p, 1.31 for Z* implies,

\(\displaystyle{C}.{I}={0.93}\pm{1.31}\sqrt{{{\frac{{{0.93}{\left({1}-{0.93}\right)}}}{{{0.93}}}}}}\)

\(\displaystyle{C}.{I}={0.93}\pm{0.346}\)

Thus, the confidence interval is \(\displaystyle{0.93}+{0.346}\) and \(\displaystyle{0.93}-{0.346}\).

Express the expression for the confidence interval.

\(\displaystyle{C}.{I}={p}\pm{Z}\cdot\sqrt{{{\frac{{{p}{\left({1}-{p}\right)}}}{{{n}}}}}}\)

Here, Z* is the critical value .

From the Z table, the value corresponding to the region 90.5 is,

\(\displaystyle{Z}\cdot={1.31}\)

Step 2

Put 590 for n, 0.93 for p, 1.31 for Z* implies,

\(\displaystyle{C}.{I}={0.93}\pm{1.31}\sqrt{{{\frac{{{0.93}{\left({1}-{0.93}\right)}}}{{{0.93}}}}}}\)

\(\displaystyle{C}.{I}={0.93}\pm{0.346}\)

Thus, the confidence interval is \(\displaystyle{0.93}+{0.346}\) and \(\displaystyle{0.93}-{0.346}\).