Spring-planted oat for forage

Spring-planted oat has been a “go to” forage crop for southern Great Plains beef producers for years. It is a good option when winter wheat was not planted in the fall due to wet conditions, or, as is the case this year, when wheat failed to emerge due to drought. Forage production potential for spring-planted oat is around 1,500 to 2,00 lb/ac, but you will need about 60 – 75 lb/ac of nitrogen to make this type of yield. Dr. Daren Redfern and I wrote a fact sheet detailing spring oat production for hay and it can be found by clicking here or going to www.wheat.okstate.edu under “wheat management” then “seeding”. I will provide the Cliff’s Notes version below.

Spring oat can provide an alternate hay or forage source in the spring

Spring oat can provide an alternate hay or forage source in the spring

Seed — Plant 80 – 100 lb/ac of good quality seed that has a germination of no less than 85%. There aren’t many options regarding varieties, so you will likely be limited to whatever seed is available in your area. The key is not to cut back on seeding rate, regardless of variety.

Seedbed — Sow oat seed at approximately 1/2 to 3/4 inches deep. Most producers will fare better with a conventionally-tilled seedbed. You are planting seed at a time of year when the ground is already marginal regarding temperature. Conventionally-tilled seedbeds warm more quickly, which should speed germination. There is one exception to the conventional till recommendation. If you are sowing into a stale seedbed or a failed wheat crop that is very thin, no-till should be okay. Just avoid situations where excessive residue will keep the soil cold.

Grazing — Oat plants should have a minimum of six inches of growth prior to grazing. Unlike fall-seeded cereals, you should not expect a large amount of tillering. A good stand of spring oat can provide a 750 lb animal approximately 60 days of grazing when stocked at 1.5 animals per acre

Hay — Oat should be cut for hay at early heading.

Northwestern / north central Oklahoma wheat update – drought, greenbugs, and freeze

Dr. Hunger traveled southwest Oklahoma this week, so I made a trip out Hwy. 60 yesterday to evaluate freeze injury and assess the overall condition of the wheat crop in northwestern and north central Oklahoma. Last week’s warm temperatures and wind have taken their toll on wheat in Kay, Grant, and eastern Garfield Counties. It is not too late for rain to save a partial wheat crop in these areas, but the “full yield potential” ship sailed long ago. Wheat sown behind summer crops is the hardest hit, and wheat in these fields could best be described as yellow and thin. If the weather turned and we received rain in the next week, I would predict that yield potential in these fields would still only be around the 15 bushel mark. Without rain, subtract around 15 bushels. Wheat planted behind summer fallow has held on a little longer, but is clearly showing the signs of extreme drought stress. If we receive rain in the next week (and continue to see rain) these fields could still make 20 – 30 bushels per acre. In the absence of rain in the near future, they will be 10 bushels per acre or less.

Wheat in the Lamont test plot was approximately GS 7 - 8. Flag leaves were rolled and plants were starting to abort tillers.

Wheat in the Lamont test plot was approximately GS 7 – 8. Flag leaves were rolled and plants were starting to abort tillers.

 

In addition to drought stress, we found freeze injury and greenbugs at Lamont. I was a little surprised to find freeze injury and even more surprised to find the greatest injury in the later-maturing varieties. We split several stems of early varieties such as Ruby Lee and Gallagher and did not find any injury. These varieties would have likely been at approximately GS 7 – 8 when the freeze occurred. We found significant injury in later-maturing varieties such as Endurance, but these varieties were likely only GS 6 – 7 when the freeze occurred. Conventional wisdom regarding freeze injury is that the more advanced the variety, the greater the likelihood of freeze injury. After seeing the same phenomenon last year (i.e. the greatest injury in later maturing varieties) I am changing my thinking on freeze injury and now say that all bets are off when it comes to freeze injury in drought stressed wheat.

Freeze injury was greatest in late-maturing varieties at Lamont.

Freeze injury was greatest in late-maturing varieties at Lamont.

 

Overall wheat condition started to improve around Nash and Jet, I would say that much of the wheat in this area is CURRENTLY in fair to good condition. I emphasize the currently in the previous sentence, as the only difference between wheat in the Cherokee area and wheat to the east was about one week’s worth of moisture. Some terrace ridges had already started turning blue and moisture was starting to run out. Without rain wheat in this area will rapidly deteriorate from good to poor. One consistent theme throughout the day was greenbugs. Many sites had evidence of parasitic wasp activity (i.e. aphid mummies), but the presence or absence of parasitic wasp activity varied field by field. Dr. Royer has indicated that greenbugs still need to be controlled in drought stressed wheat. If parasitic wasps are active, the best decision is to let them do the aphid killing for you. If no mummies are present, then insecticide control could be justified. The only sure way to make this determination is to use the glance-n-go sampling system.

 

Greenbugs were alive and well at Lamont

Greenbugs were alive and well at Lamont

Parasitic wasps were keeping greenbug populations under control in this field

Parasitic wasps were keeping greenbug populations under control in this field

Active and parasitized greenbugs on the same plant

Active and parasitized greenbugs on the same plant

 

Similar to Lamont, we found freeze injury in the Cherokee and Helena areas. Many of the worst looking fields (extensive leaf burn) had only superficial injury and should recover if moisture allows. Conversely, some plants that showed no outward signs of freeze injury had injured heads within.  Most fields I surveyed had less than 10% injury, but one field was a complete loss. On the surface the 10% injury field and 100% loss field looked the same, so I cannot over stress the importance of splitting stems. I have received a few additional reports of freeze injury from Kay County this morning, so it is important for producers throughout northern Oklahoma to evaluate their wheat on a field by field basis.

 

Plants that look healthy on the exterior could contain damaged wheat heads

Plants that look healthy on the exterior could contain damaged wheat heads

A closeup of the damaged wheat head from the picture above

A closeup of the damaged wheat head from the picture above

Although freeze injury to plant tissue in this field was severe, the wheat heads were mostly left unscathed

Although freeze injury to plant tissue in this field was severe, the wheat heads were mostly left unscathed

A closeup of a head from the freeze-injured wheat shown above. Although tissue damage is severe, the growing point and wheat head are still viable

A closeup of a head from the freeze-injured wheat shown above. Although tissue damage is severe, the growing point and wheat head are still viable

A final note on freeze injury. Freeze injury appeared to be worst in no-till fields and in areas where residue was heaviest. Based on my observations, this was not due to winterkill or poor seed to soil contact. My best explanation is that the lack of soil cover in conventional till fields allowed stored heat to radiate from the soil surface and slightly warm the crop canopy. The insulating effect of residue in no-till fields did not allow radiant heating to occur. Given the pattern of freeze injury in fields with varying degrees of residue across the field, I feel pretty confident in this analysis of what occurred.

Please use the comment section to share pictures or descriptions of wheat in your area.

Army cutworms reported in some Oklahoma wheat fields

This article is provided by Dr. Tom A. Royer, OSU Extension Entomologist

Sug Farrington, Extension Educator in Cimarron County received a sample of “worms” that were collected by a producer in his wheat field. They turned out to be army cutworms.

Unlike the fall armyworm, this caterpillar overwinters in Oklahoma, tolerates cold and feeds throughout the winter months. Adult army cutworm moths migrate to Oklahoma each fall from their summer residence in the Rocky Mountains. They seek bare or sparsely vegetated fields (like a newly prepared field ready for wheat planting, or a field that was “dusted in” and had not yet emerged) and lay eggs from August through October. The eggs hatch soon after being deposited, which explains why a producer might see different sizes of larvae in a field. Army cutworms feed throughout the winter and molt seven times before they turn into pupae in the soil. Most larvae will be gone by late March and adult moths begin emerging in April and fly back to the Rocky Mountains to spend the summer.

Army cutworms. Photo courtesy Sug Farrington, Cimarron County Extension Educator.

Army cutworms can cause severe stand loss of wheat if not controlled. Cutworm damage often goes unnoticed through the winter because the caterpillars grow slowly and don’t get big enough to cause noticeable damage until temperatures warm in the spring. Unfortunately, that is also an indication of poor growing conditions due to drought (which cutworms also like), so it becomes important to check the fields for cutworms. If you notice a field at this time of year with a numbers of starlings or black birds feeding in a concentrated area of your wheat field, they are likely feasting on army cutworms!

Army cutworm injury in wheat. Photo courtesy Sug Farrington, Cimarron County Extension Educator.

Army cutworm injury in wheat. Photo courtesy Sug Farrington, Cimarron County Extension Educator.

Sample a field by stirring or digging the soil to a depth of two inches at 5 or more locations. Also, turn over those dried up cow patties, as they are a favorite hiding place for army cutworms. The cutworms will be “greenish grey”, and will probably curl up into a tight “C” when disturbed. A suggested treatment threshold is 2-3 caterpillars per foot of row when conditions are dry (like we are experiencing this winter) or 4-5 caterpillars per row-foot in fields with adequate moisture. Control suggestions are listed in Current Report-7194 Management of Insect and Mite Pests in Small Grains.

Army cutworms are also a potential pest of canola. Scout fields just as you would in wheat. The suggested treatment threshold for cutworms in canola is 1-2 per row-foot. Current recommendations for control of army cutworms in canola are listed in CR-7667, Management of Insect and Mite Pests in Canola.

Spring-planted oat for forage

Spring-planted oat has been a “go to” forage crop for southern Great Plains beef producers for years. It is a good option when winter wheat was not planted in the fall due to wet conditions, or, as is the case this year, when wheat failed to emerge due to drought. Forage production potential for spring-planted oat is around 1,500 to 2,00 lb/ac, but you will need about 60 – 75 lb/ac of nitrogen to make this type of yield. A fact sheet detailing spring oat production for hay can be found at www.wheat.okstate.edu.  I will provide the Cliff’s Notes version below.

Seed — Plant 80 – 100 lb/ac of good quality seed that has a germination of no less than 85%. There aren’t many options regarding varieties, so you will likely be limited to whatever seed is available in your area. The key is not to cut back on seeding rate, regardless of variety.

Seedbed — Sow oat seed at approximately 1/2 to 3/4 inches deep. Most producers will fare better with a conventionally-tilled seedbed. You are planting seed at a time of year when the ground is already marginal regarding temperature. Conventionally-tilled seedbeds warm more quickly, which should speed germination. There is one exception to the conventional till recommendation. If you are sowing into a stale seedbed or a failed wheat crop that is very thin, no-till should be okay. Just avoid situations where excessive residue will keep the soil cold.

Grazing — Oat plants should have a minimum of six inches of growth prior to grazing. Unlike fall-seeded cereals, you should not expect a large amount of tillering. Dr. Redfearn indicates a good stand of spring oat can provide a 750 lb animal approximately 60 days of grazing when stocked at 1.5 animals per acre

Hay — Oat should be cut for hay at early heading.

Planting wheat in hot soils

Kickoff of the college football season and the start of wheat planting are Labor Day traditions in the southern Great Plains. Many producers are waiting to see if rain forecasted for this weekend materializes, but it is likely that forage-based wheat farmers will start sowing wheat next week whether it rains or not. This means sowing wheat into hot soil conditions which can cause wheat germination and emergence issues. Given the potential problems, there are a few questions producers should ask themselves prior to planting into soil temperatures >90F.

coleoptile length

If the wheat coleoptile does not break the soil surface, the germinating wheat plant will not survive.

Will you have to plant deep to reach moisture? That first structure protruding from a germinating wheat seed is actually not a leaf. It is the coleoptile. The wheat coleoptile is a rigid structure whose sole purpose is to “punch through” the soil surface so that the first true leaf emerges above the soil surface. If this does not happen, the first true leaf will try to extend below the soil surface, turn yellow, and take on an accordion-like appearance (picture above). Modern semi-dwarf wheat varieties have shorter coleoptiles than older, tall wheat varieties and coleoptile length is shortened even further by hot soil conditions. So it is important to plant a variety with a longer coleoptile length (e.g. Garrison or Doans) if planting deeply into hot soils. A rating of coleoptile lengths for wheat varieties can be found in OSU Fact Sheet 2141 OSU Wheat Variety Comparison Chart available at www.wheat.okstate.edu or at the direct link to the publication here.

Is the variety high temperature germination sensitive? High temperature germination sensitivity is a fancy way of saying that some wheat varieties simply don’t germinate well in hot soil conditions (e.g. 2174, Overley). The extent of the sensitivity varies by year, so Overley might germinate fine in 95F soils one year and produce a 10% stand in the same soil conditions the next. When sowing early, it is best to plant varieties that do not have high temperature germination sensitivity (e.g. Duster, Gallagher, or Armour). Soil conditions generally cool due to lower ambient temperatures or cooling rains by about September 20; however our summer temperatures seem to be arriving late this year, so it is best to know the level of germination sensitivity in the variety you are planting. A rating of high temperature germination sensitivity for wheat varieties can be found in the variety comparison chart linked above. A more detailed explanation of the phenomenon can be found in OSU Fact Sheet PSS 2256 Factors affecting wheat germination and stand establishment in hot soils (available by clicking here).

Partial funding for the research included in this blog post was provided by USDA Project No.2012-02355 through the National Institute for Food and Agriculture’s Agriculture and Food Research Initiative, Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change

2014 Wheat Crop Overview

This blog post is an excerpt from the 2014 OSU Small Grains Variety Performance Tests report, which is available at http://www.wheat.okstate.edu or by clicking here.

At the time of writing this post, 2014 Oklahoma wheat production is estimated to be approximately 51 million bushels, which is roughly half of 2013 production (Table 1). Oklahoma has not seen wheat production this low since the 43 million bushel crop of 1957, and with any luck, production will not be this low again for at least another 60 years.

 

Table 1. Oklahoma wheat production for 2013 and 2014 as estimated by OK NASS, July 2014
2013 2014
Harvested Acres 3.4 million 3.0 million
Yield (bu/ac) 31 17
Total bushels 105 million 51 million

 

The 2013-2014 wheat production season had a good start in central Oklahoma. Topsoil moisture was short in September, but October rains resulted in favorable conditions for wheat emergence and establishment. In addition, many areas had a fair amount of stored soil moisture from the summer of 2013. This stored soil moisture allowed sites such as Chickasha and Lahoma to produce 43 and 47 bu/ac average wheat yield on less than eight inches of rainfall during the growing season. Stored soil moisture also contributed to adequate forage production at grazed sites such as Marshall Dual-Purpose, but production of a forage crop did not leave behind enough moisture to fuel much of a grain crop.

 

The multi-year drought never released its stranglehold on western Oklahoma during the 2013-2014 wheat production season. Small rains here or there allowed most producers to obtain an acceptable stand of wheat, but moisture was never sufficient to spur tillering or leaf area development. Early winter snowfall made for a few bright spots for forage production in southwestern Oklahoma, but this moisture was quickly utilized by growing wheat plants and dry conditions soon returned. As a result, many fields in southwestern and western Oklahoma were abandoned and not taken to harvest.

This photo of a wheat field near Altus, Oklahoma in April 2014 shows the level of devastation from the extreme, multi-year drought. Most wheat fields in this region were abandoned due to drought.

This photo of a wheat field near Altus, Oklahoma in April 2014 shows the level of devastation from the extreme, multi-year drought. Most wheat fields in this region were abandoned due to drought.

 

Thin wheat stands left some fields vulnerable to blowing sand and wind erosion

Thin wheat stands left some fields vulnerable to blowing sand and wind erosion

The winter of 2013-2014 wasn’t just dry; it was cold too. Young, drought-stressed wheat plants had difficulty dealing with the cold, windy conditions, and winterkill was common in late-sown wheat. Winterkill was also common in grazed wheat that was stressed by heavy grazing pressure and inadequate soil moisture. Considerable winterkill was also present in no-till wheat without adequate seed to soil contact in northwestern Oklahoma. The inadequate seed to soil contact was generally the result of heavy residue from the previous year’s wheat crop.

Winterkill was common in northwestern Oklahoma, with the greatest injury occurring in no-till and/or grazed wheat fields.

Winterkill was common in northwestern Oklahoma, with the greatest injury occurring in no-till and/or grazed wheat fields.

Closer inspection of some no-till fields with winterkill revealed shallow seed placement due to heavy and/or unevenly spread residue from the 2103 wheat crop.

Closer inspection of some no-till fields with winterkill revealed shallow seed placement due to heavy and/or unevenly spread residue from the 2103 wheat crop.

 

While the wheat crop did not appear to be on its way to bumper production, most producers hoped for a turnaround similar to 2013 and topdressed in late winter. Unlike the spring of 2013, however, the rains never came and much of this topdress N applied did not make it into the soil until the crop was at boot stage or later.

 

The cold winter delayed the onset of first hollow stem by about five days as compared to 2013 and 25 days as compared to 2012. Despite a slow start to the spring, wheat in southern Oklahoma was near heading when a hard freeze occurred the morning of April 15, 2014. As expected, drought stressed wheat in advanced stages in southwestern Oklahoma suffered severe freeze damage; however, injury from the 2014 spring freeze did not always follow the “rule of thumb” guidelines used by agronomists. Many areas that received small amounts of rain just prior to the freeze seemed to escape widespread injury, regardless of growth stage. In southcentral Oklahoma, injury seemed to be most severe on later maturing varieties that were approximately Feekes GS 7 to booting, while earlier-maturing varieties that were just starting to head escaped freeze injury. Wheat that was barely past two nodes in northern Oklahoma suffered severe injury, while more advanced wheat in central Oklahoma endured similar temperatures with minimal injury.

 

There were relatively few insect or disease issues to deal with during the 2013-2014 wheat production season. Winter grain mite and/or brown wheat mite infestations proved to be too much for some drought stressed wheat fields in northcentral and northwestern Oklahoma. Some fields already devastated by the drought were left unsprayed, while others still showing some sign of yield potential were treated.

 

Injury, such as the bronzed areas in the picture above, was the result of brown wheat mite and/or winter grain mite infestations in late winter.

Injury, such as the bronzed areas in the picture above, was the result of brown wheat mite and/or winter grain mite infestations in late winter.

 

Other than a rare siting of a single leaf rust pustule, there was no foliar disease in Oklahoma in 2014. The lack of foliar disease is evidenced by the lack of response to foliar fungicides at either Chickasha or Lahoma. These two sites provided a rare opportunity in 2014 to observe yield impacts of foliar fungicides in the absence of disease, as most years we report at least light or negligible foliar disease at these sites. While foliar disease was not an issue in 2014, wheat streak mosaic virus was an issue for many producers. This disease has historically been most prevalent in northwestern Oklahoma and the Panhandle. Wheat streak mosaic virus was confirmed in several fields downstate this year, however, and it is likely that some fields affected by wheat streak mosaic virus were not identified as such because it is sometimes difficult to distinguish wheat streak mosaic virus symptoms from those of severe drought stress. The wheat variety testing program was not immune from this disease, and we lost our Kildare location to wheat streak mosaic virus.

 

Warmer temperatures in May hastened crop maturity and the Oklahoma wheat harvest began near Frederick on May 22, 2014. By the first week of June, harvest was in full swing, only to be delayed by rain shortly thereafter. Harvest resumed across most of the state by June 13 and was mostly completed by June 30. The exceptions being some waterlogged areas in northern Oklahoma. The Cherokee Mesonet site, for example, reported 5.1 inches of rainfall from October 1, 2013 to May 31, 2014, but the same site received 10 inches of rain from June 1 to June 30, 2014.

Pictures from southwest Oklahoma

I wanted to share a few pics from Rocky Thacker, Station Superintendent at the OSU Southwest Research and Extension Center near Altus, OK. These pictures were taken on April 8 and clearly show the extent of the current drought’s damage to the southwest Oklahoma wheat crop.

Altus Area Wheat-April 2014 001 Altus Area Wheat-April 2014 002 Altus Area Wheat-April 2014 004 Altus Area Wheat-April 2014 003

Oklahoma wheat update 03/28/2014

On Friday, March 28th I made a tour through northwestern Oklahoma to diagnose a few problem fields and get a better feel for the wheat crop condition. I have provided a brief description of what I saw below. I did not make it to southwestern Oklahoma this trip, but by all accounts the wheat is dry, brown, and barely hanging on. A best case scenario in areas southwest of Apache this year is a poor wheat crop. It will have to rain a lot between now and harvest for this to happen.

Reports from Apache eastward are somewhat better. The wheat crop in this area still has potential, but the potential is declining. A farmer from the Hinton area called yesterday and indicated that moisture could still be found about 1 inch below the soil surface, but the top is still very dry. We need a soaking rain to move nitrogen into the rooting zone and to perk the crop up post dormancy.

My first stop this morning was at Lamont. Wheat in this area is smaller than normal and is at approximately Feekes GS5. There were several yellow areas in fields and uneven wheat. Much of this yellowing appeared to be nitrogen deficiency, but not all of it was due to insufficient top dress nitrogen. We simply have not had enough moisture to get good movement of top dress N into the rooting profile and for the wheat crop to take up applied N. Some of the yellowing was also due to drought stress. Some of the yellowing could have been due to brown wheat mite and/or winter grain mite activity (described more below).

My second stop was at our Cherokee variety plots. Wheat in this area was uneven, similar to Lamont. As shown in the picture below, part of our plot area was showing significant yellowing. Initially, I thought this was due to changes in soil type/nutrient variability. Upon closer inspection, this area was infested with brown wheat mite. These symptoms have only started to show in the last week or so. Thanks to variety trial cooperator Kenneth Failes, this situation will be remedied as soon as the wind settles.

The yellow, stunted areas in our Cherokee variety trial were caused by brown wheat mite

The yellow, stunted areas in our Cherokee variety trial were caused by brown wheat mite

 

Next stop was Alva, where the trend of uneven and yellow wheat continued. As shown in the picture below, there were several fields in the area with spots of dead or nearly dead wheat. Brown wheat mites were found in most of these fields and probably weakened plants which increased the amount of winterkill. In some fields seed had been placed at the proper depth, but the seed trenches were partially filled with residue rather than soil. Residue provides less insulation than soil and likely made heavy residue areas more prone to winterkill. I also noticed in these fields that the crown of the plant had developed in residue rather than soil, which likely increased winterkill. I looked at additional no-till fields in the area with severe winter injury, but plants that were still viable. Grazed fields seemed to have greater injury than non-grazed.

Areas of winterkill in no-till wheat near Alva

Areas of winterkill in no-till wheat near Alva

 

Although seeded at the proper depth, some wheat plants in heavy residue areas had crown placement at the soil surface. This increased the severity of winterkill.

Although seeded at the proper depth, some wheat plants in heavy residue areas had crown placement at the soil surface. This increased the severity of winterkill.

I looked at a few fields south of Enid. Unlike the fields in Grant, Alfalfa, and Woods Counties, this primary issue in these fields was winter grain mite instead of brown wheat mite. The symptoms were areas of the field having a silver tint. Some areas had died or lost several tillers and these areas got bigger as the season progressed and dry conditions worsened.

Field affected by winter grain mite south of Enid. Note the silver tint of the wheat on the left side of the terrace.

Field affected by winter grain mite south of Enid. Note the silver tint of the wheat on the left side of the terrace.

 

I ended my tour at Marshall, Oklahoma where I did not find any insects, but did find some thirsty wheat. All of the insect issues I encountered today can be corrected with scouting and insecticides. Wheat winterkill was present, but rarely affected entire fields and was not that widespread. The primary concern for all of Oklahoma remains lack of moisture. There are some fields in north central and northwestern Oklahoma with good yield potential; however, the best areas are starting to turn blue due to lack of moisture. Another couple of weeks of warm temperatures and wind without rain will turn blue wheat to brown. We need moisture.

Planting wheat in hot soils

As is usually the case in Oklahoma, we currently have a wide range of soil moisture conditions. Soils in central Oklahoma are generally dry on top, but there is ample soil moisture below. Soils in western Oklahoma and the Panhandle are dry all the way down. A few drills have started rolling, but most producers are waiting on a “State Fair” rain to get started (for all you non-Okies, it usually rains sometime during the State Fair in early September). While moisture availability is the primary driver of wheat planting, it is not the only consideration for producers. Hot soil conditions can affect wheat germination too, and there are a few questions producers should ask themselves prior to planting into soil temperatures >90F.

coleoptile length

If the wheat coleoptile does not break the soil surface, the germinating wheat plant will not survive.

Will you have to plant deep to reach moisture? That first structure protruding from a germinating wheat seed is actually not a leaf. It is the coleoptile. The wheat coleoptile is a rigid structure whose sole purpose is to “punch through” the soil surface so that the first true leaf emerges above the soil surface. If this does not happen, the first true leaf will try to extend below the soil surface, turn yellow, and take on an accordion-like appearance (picture above). Modern semi-dwarf wheat varieties have shorter coleoptiles than older, tall wheat varieties and coleoptile length is shortened even further by hot soil conditions. So it is important to plant a variety with a longer coleoptile length (e.g. Garrison or Doans) if planting deeply into hot soils. A rating of coleoptile lengths for wheat varieties can be found in OSU Fact Sheet 2141 OSU Wheat Variety Comparison Chart available at www.wheat.okstate.edu or at the direct link to the publication here.

Is the variety high temperature germination sensitive? High temperature germination sensitivity is a fancy way of saying that some wheat varieties simply don’t germinate well in hot soil conditions (e.g. 2174, Overley). The extent of the sensitivity varies by year, so Overley might germinate fine in 95F soils one year and produce a 10% stand in the same soil conditions the next. When sowing early, it is best to plant varieties that do not have high temperature germination sensitivity (e.g. Duster, Gallagher, or Armour). Soil conditions generally cool due to lower ambient temperatures or cooling rains by about September 20; however our summer temperatures seem to be arriving late this year, so it is best to know the level of germination sensitivity in the variety you are planting. A rating of high temperature germination sensitivity for wheat varieties can be found in the variety comparison chart linked above. A more detailed explanation of the phenomenon can be found in OSU Fact Sheet PSS 2256 Factors affecting wheat germination and stand establishment in hot soils (available by clicking here).

Spring-planted oat for forage

Spring-planted oat has been a “go to” forage crop for southern Great Plains beef producers for years. It is a good option when winter wheat was not planted in the fall due to wet conditions, or, as is the case this year, when wheat failed to emerge due to drought. Forage production potential for spring-planted oat is around 1,500 to 2,00 lb/ac, but you will need about 60 – 75 lb/ac of nitrogen to make this type of yield. Dr. Daren Redfearn has written a fact sheet detailing spring oat production for hay and it can be found at www.wheat.okstate.edu under “wheat management” then “seeding”. I will provide the Cliff’s Notes version below.

Seed — Plant 80 – 100 lb/ac of good quality seed that has a germination of no less than 85%. There aren’t many options regarding varieties, so you will likely be limited to whatever seed is available in your area. The key is not to cut back on seeding rate, regardless of variety.

Seedbed — Sow oat seed at approximately 1/2 to 3/4 inches deep. Most producers will fare better with a conventionally-tilled seedbed. You are planting seed at a time of year when the ground is already marginal regarding temperature. Conventionally-tilled seedbeds warm more quickly, which should speed germination. There is one exception to the conventional till recommendation. If you are sowing into a stale seedbed or a failed wheat crop that is very thin, no-till should be okay. Just avoid situations where excessive residue will keep the soil cold.

Grazing — Oat plants should have a minimum of six inches of growth prior to grazing. Unlike fall-seeded cereals, you should not expect a large amount of tillering. Dr. Redfearn indicates a good stand of spring oat can provide a 750 lb animal approximately 60 days of grazing when stocked at 1.5 animals per acre

Hay — Oat should be cut for hay at early heading.